Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Frontiers of COVID-19: Scientific and Clinical Aspects of the Novel Coronavirus 2019 ; : 471-486, 2022.
Article in English | Scopus | ID: covidwho-20241346

ABSTRACT

In the last 20 years, the world has been threatened with coronavirus (CoV) pandemic threats from severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002, Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 and finally COVID-19 due to SARS-CoV-2 in 2019. These viruses posed serious global pandemic threats, with estimated case fatality rates of 15% for SARS-CoV, 34% for MERS-CoV, and 1-3% for SARS-CoV-2. With the current pandemic still far from over there is an urgent need to find new drug treatments for COVID-19. We can assume that this will not be the last coronavirus to threaten humanity, so we need better tools to identify drugs active against past but also future coronavirus threats. In this Chapter we describe in silico computer modeling and screening approaches that can rapidly identify drugs from existing drug libraries that could be repurposed to treat COVID-19 infections. We also describe how this computational screening pipeline can be expanded in the future to identify drugs with broad spectrum activity against a wide diversity of coronaviruses. A significant concern is that the protection against CoVs provided by single drugs protection may be short-lived because viruses rapidly mutate to develop drug resistance. We know from other viruses such as HIV that drugs hitting multiple targets within the virus provide better protection against the development of resistance. This Chapter describes the current state of development of in silico CoV drug repurposing, the challenges and pitfalls of these approaches, and our predictions of how these methods could be used to develop drugs for future pandemics before they occur. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022.

2.
J Clin Invest ; 132(4)2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1705312

ABSTRACT

Many SARS-CoV-2 neutralizing antibodies (nAbs) lose potency against variants of concern. In this study, we developed 2 strategies to produce mutation-resistant antibodies. First, a yeast library expressing mutant receptor binding domains (RBDs) of the spike protein was utilized to screen for potent nAbs that are least susceptible to viral escape. Among the candidate antibodies, P5-22 displayed ultrahigh potency for virus neutralization as well as an outstanding mutation resistance profile. Additionally, P14-44 and P15-16 were recognized as mutation-resistant antibodies with broad betacoronavirus neutralization properties. P15-16 has only 1 binding hotspot, which is K378 in the RBD of SARS-CoV-2. The crystal structure of the P5-22, P14-44, and RBD ternary complex clarified the unique mechanisms that underlie the excellent mutation resistance profiles of these antibodies. Secondly, polymeric IgG enhanced antibody avidity by eliminating P5-22's only hotspot, residue F486 in the RBD, thereby potently blocking cell entry by mutant viruses. Structural and functional analyses of antibodies screened using both potency assays and the yeast RBD library revealed rare, ultrapotent, mutation-resistant nAbs against SARS-CoV-2.


Subject(s)
Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/genetics , Antibody Affinity , B-Lymphocytes/immunology , Binding Sites/genetics , Binding Sites/immunology , Broadly Neutralizing Antibodies/blood , Broadly Neutralizing Antibodies/genetics , COVID-19/therapy , Cloning, Molecular , Disease Models, Animal , Humans , Immunization, Passive , Immunoglobulin G/immunology , In Vitro Techniques , Lung/virology , Mice , Mice, Inbred BALB C , Mutation , Neutralization Tests , Receptors, Virus/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Serotherapy
3.
JCI Insight ; 6(18)2021 09 22.
Article in English | MEDLINE | ID: covidwho-1435141

ABSTRACT

Cell lines are the mainstay in understanding the biology of COVID-19 infection but do not recapitulate many of the complexities of human infection. The use of human lung tissue is one solution for the study of such novel respiratory pathogens. We hypothesized that a cryopreserved bank of human lung tissue would allow for the ex vivo study of the interindividual heterogeneity of host response to SARS-CoV-2, thus providing a bridge between studies with cell lines and studies in animal models. We generated a cryobank of tissues from 21 donors, many of whom had clinical risk factors for severe COVID-19. Cryopreserved tissues preserved 90% cell viability and contained heterogenous populations of metabolically active epithelial, endothelial, and immune cell subsets of the human lung. Samples were readily infected with HCoV-OC43 and SARS-CoV-2 and demonstrated comparable susceptibility to infection. In contrast, we observed a marked donor-dependent heterogeneity in the expression of IL6, CXCL8, and IFNB1 in response to SARS-CoV-2. Treatment of tissues with dexamethasone and the experimental drug N-hydroxycytidine suppressed viral growth in all samples, whereas chloroquine and remdesivir had no detectable effect. Metformin and sirolimus, molecules with predicted but unproven antiviral activity, each suppressed viral replication in tissues from a subset of donors. In summary, we developed a system for the ex vivo study of human SARS-CoV-2 infection using primary human lung tissue from a library of donor tissues. This model may be useful for drug screening and for understanding basic mechanisms of COVID-19 pathogenesis.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Immunity, Innate/immunology , Interferons/therapeutic use , Lung/pathology , SARS-CoV-2 , Aged , COVID-19/immunology , Cell Line , Female , Humans , Lung/immunology , Male , Middle Aged
4.
J Clin Invest ; 131(10)2021 05 17.
Article in English | MEDLINE | ID: covidwho-1285140

ABSTRACT

Drugs targeting host proteins can act prophylactically to reduce viral burden early in disease and limit morbidity, even with antivirals and vaccination. Transmembrane serine protease 2 (TMPRSS2) is a human protease required for SARS coronavirus 2 (SARS-CoV-2) viral entry and may represent such a target. We hypothesized that drugs selected from proteins related by their tertiary structure, rather than their primary structure, were likely to interact with TMPRSS2. We created a structure-based phylogenetic computational tool named 3DPhyloFold to systematically identify structurally similar serine proteases with known therapeutic inhibitors and demonstrated effective inhibition of SARS-CoV-2 infection in vitro and in vivo. Several candidate compounds, avoralstat, PCI-27483, antipain, and soybean trypsin inhibitor, inhibited TMPRSS2 in biochemical and cell infection assays. Avoralstat, a clinically tested kallikrein-related B1 inhibitor, inhibited SARS-CoV-2 entry and replication in human airway epithelial cells. In an in vivo proof of principle, avoralstat significantly reduced lung tissue titers and mitigated weight loss when administered prophylactically to mice susceptible to SARS-CoV-2, indicating its potential to be repositioned for coronavirus disease 2019 (COVID-19) prophylaxis in humans.


Subject(s)
COVID-19 , Phylogeny , SARS-CoV-2/physiology , Serine Endopeptidases , Serine Proteinase Inhibitors , Virus Internalization/drug effects , Virus Replication/drug effects , Animals , COVID-19/enzymology , COVID-19/genetics , COVID-19/prevention & control , Chlorocebus aethiops , Female , HEK293 Cells , Humans , Male , Mice , Serine Endopeptidases/chemistry , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology , Structure-Activity Relationship , Vero Cells
5.
JCI Insight ; 5(23)2020 12 03.
Article in English | MEDLINE | ID: covidwho-890008

ABSTRACT

We remain largely without effective prophylactic/therapeutic interventions for COVID-19. Although many human COVID-19 clinical trials are ongoing, there remains a deficiency of supportive preclinical drug efficacy studies to help guide decisions. Here we assessed the prophylactic/therapeutic efficacy of hydroxychloroquine (HCQ), a drug of interest for COVID-19 management, in 2 animal disease models. The standard human malaria HCQ prophylaxis (6.5 mg/kg given weekly) and treatment (6.5 mg/kg given daily) did not significantly benefit clinical outcome, nor did it reduce SARS-CoV-2 replication/shedding in the upper and lower respiratory tract in the rhesus macaque disease model. Similarly, when used for prophylaxis or treatment, neither the standard human malaria dose (6.5 mg/kg) nor a high dose (50 mg/kg) of HCQ had any beneficial effect on clinical disease or SARS-CoV-2 kinetics (replication/shedding) in the Syrian hamster disease model. Results from these 2 preclinical animal models may prove helpful in guiding clinical use of HCQ for prophylaxis/treatment of COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/therapy , Hydroxychloroquine/therapeutic use , SARS-CoV-2/drug effects , Animals , COVID-19/pathology , COVID-19/prevention & control , Chlorocebus aethiops , Cricetinae , Cytokines/metabolism , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Lung/pathology , Lung/virology , Macaca mulatta , Male , Treatment Outcome , Vero Cells , Viral Load/drug effects , Virus Replication/drug effects , Virus Shedding/drug effects , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL